Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Med Case Rep ; 17(1): 121, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37013596

RESUMO

BACKGROUND: Congenital toxoplasmosis can be associated with serious clinical consequences from fetus to adulthood. Hence, early detection is required to minimize severe sequelae through appropriate therapy. We describe the first case of a congenital toxoplasmosis after maternal coinfection with Toxoplasma gondii and severe acute respiratory syndrome coronavirus 2 and the challenging serological diagnosis of the disease in this context. CASE PRESENTATION: A Caucasian boy was born at 27 weeks 2 days of gestation by cesarean section due to maternal COVID-19-related respiratory failure. Postpartum serological screening of the mother revealed a previously unrecognized active Toxoplasma gondii infection. The premature child initially tested negative for anti- Toxoplasma gondii immunoglobulin A and M antibodies 1, 2 and 4 weeks after birth, whereas immunoglobulin G antibodies were only weakly positive with no evidence of child-specific production. Neither neurological nor ophthalmological abnormalities were detected. Approximately 3 months after birth, serological testing indicated a congenital toxoplasmosis by presence of immunoglobulin A and M, in combination with a child-specific immunoglobulin G synthesis. Additionally, cerebrospinal fluid was tested positive for Toxoplasma gondii DNA. Although no clinical manifestations of congenital toxoplasmosis were detected, an antiparasitic therapy was initiated to minimize the risk of late sequelae. There were no hints for a transplacental transmission of severe acute respiratory syndrome coronavirus 2. CONCLUSION: This case raises the awareness of possible coinfections with the risk of transplacental transmission in cases of maternal coronavirus disease 2019. The report emphasizes the need for screening vulnerable patients for toxoplasmosis in general and especially in the context of pregnancy. It becomes evident that prematurity can complicate the serological diagnosis of congenital toxoplasmosis due to a delayed antibody response. Repeated testing is recommended to carefully monitor children at risk and especially those with a history of preterm birth.


Assuntos
COVID-19 , Coinfecção , Nascimento Prematuro , Toxoplasma , Toxoplasmose Congênita , Toxoplasmose , Masculino , Gravidez , Recém-Nascido , Humanos , Feminino , Toxoplasmose Congênita/diagnóstico , Toxoplasmose Congênita/prevenção & controle , SARS-CoV-2 , Cesárea , Imunoglobulina G , Imunoglobulina A , Imunoglobulina M
2.
Handb Exp Pharmacol ; 264: 169-204, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32797331

RESUMO

The 1998 Nobel Prize in Medicine and Physiology for the discovery of nitric oxide, a nitrogen containing reactive oxygen species (also termed reactive nitrogen or reactive nitrogen/oxygen species) stirred great hopes. Clinical applications, however, have so far pertained exclusively to the downstream signaling of cGMP enhancing drugs such as phosphodiesterase inhibitors and soluble guanylate cyclase stimulators. All clinical attempts, so far, to inhibit NOS have failed even though preclinical models were strikingly positive and clinical biomarkers correlated perfectly. This rather casts doubt on our current way of target identification in drug discovery in general and our way of patient stratification based on correlating but not causal biomarkers or symptoms. The opposite, NO donors, nitrite and enhancing NO synthesis by eNOS/NOS3 recoupling in situations of NO deficiency, are rapidly declining in clinical relevance or hold promise but need yet to enter formal therapeutic guidelines, respectively. Nevertheless, NOS inhibition in situations of NO overproduction often jointly with enhanced superoxide (or hydrogen peroxide production) still holds promise, but most likely only in acute conditions such as neurotrauma (Stover et al., J Neurotrauma 31(19):1599-1606, 2014) and stroke (Kleinschnitz et al., J Cereb Blood Flow Metab 1508-1512, 2016; Casas et al., Proc Natl Acad Sci U S A 116(14):7129-7136, 2019). Conversely, in chronic conditions, long-term inhibition of NOS might be too risky because of off-target effects on eNOS/NOS3 in particular for patients with cardiovascular risks or metabolic and renal diseases. Nitric oxide synthases (NOS) and their role in health (green) and disease (red). Only neuronal/type 1 NOS (NOS1) has a high degree of clinical validation and is in late stage development for traumatic brain injury, followed by a phase II safety/efficacy trial in ischemic stroke. The pathophysiology of NOS1 (Kleinschnitz et al., J Cereb Blood Flow Metab 1508-1512, 2016) is likely to be related to parallel superoxide or hydrogen peroxide formation (Kleinschnitz et al., J Cereb Blood Flow Metab 1508-1512, 2016; Casas et al., Proc Natl Acad Sci U S A 114(46):12315-12320, 2017; Casas et al., Proc Natl Acad Sci U S A 116(14):7129-7136, 2019) leading to peroxynitrite and protein nitration, etc. Endothelial/type 3 NOS (NOS3) is considered protective only and its inhibition should be avoided. The preclinical evidence for a role of high-output inducible/type 2 NOS (NOS2) isoform in sepsis, asthma, rheumatic arthritis, etc. was high, but all clinical development trials in these indications were neutral despite target engagement being validated. This casts doubt on the role of NOS2 in humans in health and disease (hence the neutral, black coloring).


Assuntos
Óxido Nítrico Sintase Tipo III , Óxido Nítrico Sintase , GMP Cíclico , Humanos , Óxido Nítrico , Óxido Nítrico Sintase/metabolismo , Espécies Reativas de Oxigênio , Transdução de Sinais
3.
Sci Rep ; 10(1): 10012, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561822

RESUMO

Nitric oxide (NO)-cyclic GMP (cGMP) signaling is a vasoprotective pathway therapeutically targeted, for example, in pulmonary hypertension. Its dysregulation in disease is incompletely understood. Here we show in pulmonary artery endothelial cells that feedback inhibition by NO of the NO receptor, the cGMP forming soluble guanylate cyclase (sGC), may contribute to this. Both endogenous NO from endothelial NO synthase and exogenous NO from NO donor compounds decreased sGC protein and activity. This effect was not mediated by cGMP as the NO-independent sGC stimulator, or direct activation of cGMP-dependent protein kinase did not mimic it. Thiol-sensitive mechanisms were also not involved as the thiol-reducing agent N-acetyl-L-cysteine did not prevent this feedback. Instead, both in-vitro and in-vivo and in health and acute respiratory lung disease, chronically elevated NO led to the inactivation and degradation of sGC while leaving the heme-free isoform, apo-sGC, intact or even increasing its levels. Thus, NO regulates sGC in a bimodal manner, acutely stimulating and chronically inhibiting, as part of self-limiting direct feedback that is cGMP independent. In high NO disease conditions, this is aggravated but can be functionally recovered in a mechanism-based manner by apo-sGC activators that re-establish cGMP formation.


Assuntos
Aorta Torácica/metabolismo , GMP Cíclico/metabolismo , Endotélio Vascular/metabolismo , Óxido Nítrico/metabolismo , Artéria Pulmonar/metabolismo , Transdução de Sinais/fisiologia , Animais , Proteínas Quinases Dependentes de GMP Cíclico/genética , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Células Endoteliais/metabolismo , Guanilato Ciclase/metabolismo , Masculino , Camundongos , Camundongos Knockout , Guanilil Ciclase Solúvel/metabolismo , Suínos
4.
Free Radic Biol Med ; 148: 60-69, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31883469

RESUMO

Dysfunctional reactive oxygen species (ROS) signaling is considered an important disease mechanism. Therapeutically, non-selective scavenging of ROS by antioxidants, however, has failed in multiple clinical trials to provide patient benefit. Instead, pharmacological modulation of disease-relevant, enzymatic sources of ROS appears to be an alternative, more promising and meanwhile successfully validated approach. With respect to targets, the family of NADPH oxidases (NOX) stands out as main and dedicated ROS sources. Validation of the different NOX isoforms has been mainly through genetically modified rodent models and is lagging behind in other species. It is unclear whether the different NOX isoforms are sufficiently distinct to allow selective pharmacological modulation. Here we show for five widely used NOX inhibitors that isoform selectivity can be achieved, although individual compound specificity is as yet insufficient. NOX1 was most potently (IC50) targeted by ML171 (0.1 µM); NOX2, by VAS2870 (0.7 µM); NOX4, by M13 (0.01 µM) and NOX5, by ML090 (0.01 µM). In addition, some non-specific antioxidant and assay artefacts may limit the interpretation of data, which included, surprisingly, the clinically advanced NOX inhibitor, GKT136901. In a human ischemic blood-brain barrier hyperpermeability model where genetic target validation is not an option, we provide proof-of-principle that pharmacological target validation for different NOX isoforms is possible by applying an inhibitor panel at IC50 concentrations. Moreover, our findings encourage further lead optimization and development efforts for isoform-selective NOX inhibitors in different indications.


Assuntos
Antioxidantes , NADPH Oxidases , Antioxidantes/farmacologia , Humanos , NADPH Oxidase 1 , NADPH Oxidase 4 , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Oxirredução , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Espécies Reativas de Oxigênio
5.
NPJ Syst Biol Appl ; 4: 8, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29423274

RESUMO

Network medicine utilizes common genetic origins, markers and co-morbidities to uncover mechanistic links between diseases. These links can be summarized in the diseasome, a comprehensive network of disease-disease relationships and clusters. The diseasome has been influential during the past decade, although most of its links are not followed up experimentally. Here, we investigate a high prevalence unmet medical need cluster of disease phenotypes linked to cyclic GMP. Hitherto, the central cGMP-forming enzyme, soluble guanylate cyclase (sGC), has been targeted pharmacologically exclusively for smooth muscle modulation in cardiology and pulmonology. Here, we examine the disease associations of sGC in a non-hypothesis based manner in order to identify possibly previously unrecognized clinical indications. Surprisingly, we find that sGC, is closest linked to neurological disorders, an application that has so far not been explored clinically. Indeed, when investigating the neurological indication of this cluster with the highest unmet medical need, ischemic stroke, pre-clinically we find that sGC activity is virtually absent post-stroke. Conversely, a heme-free form of sGC, apo-sGC, was now the predominant isoform suggesting it may be a mechanism-based target in stroke. Indeed, this repurposing hypothesis could be validated experimentally in vivo as specific activators of apo-sGC were directly neuroprotective, reduced infarct size and increased survival. Thus, common mechanism clusters of the diseasome allow direct drug repurposing across previously unrelated disease phenotypes redefining them in a mechanism-based manner. Specifically, our example of repurposing apo-sGC activators for ischemic stroke should be urgently validated clinically as a possible first-in-class neuroprotective therapy.

6.
Br J Pharmacol ; 175(10): 1607-1620, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29465763

RESUMO

BACKGROUND AND PURPOSE: Non-allergic angio-oedema is a life-threatening disease mediated by activation of bradykinin type 2 receptors (B2 receptors). The aim of this study was to investigate whether activation of B2 receptors by endogenous bradykinin contributes to physiological extravasation. This may shed new light on the assumption that treatment with an angiotensin converting enzyme inhibitor (ACEi) results in an alteration in the vascular barrier function predisposing to non-allergic angio-oedema. EXPERIMENTAL APPROACH: We generated a new transgenic mouse model characterized by endothelium-specific overexpression of the B2 receptor (B2tg ) and established a non-invasive two-photon laser microscopy approach to measure the kinetics of spontaneous extravasation in vivo. The B2tg mice showed normal morphology and litter size as compared with their transgene-negative littermates (B2n ). KEY RESULTS: Overexpression of B2 receptors was functional in conductance vessels and resistance vessels as evidenced by B2 receptor-mediated aortic dilation to bradykinin in presence of non-specific COX inhibitor diclofenac and by significant hypotension in B2tg respectively. Measurement of dermal extravasation by Miles assay showed that bradykinin induced extravasation was significantly increased in B2tg as compared with B2n . However, neither endothelial overexpression of B2 receptors nor treatment with the ACEi moexipril or B2 antagonist icatibant had any effect on spontaneous extravasation measured by two-photon laser microscopy. CONCLUSIONS AND IMPLICATIONS: Activation of B2 receptors does not appear to be involved in spontaneous extravasation. Therefore, the assumption that treatment with an ACEi results in an alteration in the physiological vascular barrier function predisposing to non-allergic angio-oedema is not supported by our findings.


Assuntos
Edema/metabolismo , Receptor B2 da Bradicinina/metabolismo , Pele/metabolismo , Animais , Bradicinina/sangue , Bradicinina/metabolismo , Cinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptor B2 da Bradicinina/genética
7.
Biochem Pharmacol ; 112: 24-36, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27235748

RESUMO

Increasing vascular NO levels following up-regulation of endothelial nitric oxide synthase (eNOS) is considered beneficial in cardiovascular disease. Whether such beneficial effects exerted by increased NO-levels include the vascular renin-angiotensin system remains elucidated. Exposure of endothelial cells originated from porcine aorta, mouse brain and human umbilical veins to different NO-donors showed that expression of the angiotensin-II-type-2-receptor (AT2) mRNA and protein is up-regulated by activation of soluble guanylyl cyclase, protein kinase G and p38 mitogen-activated protein kinase without changing AT2 mRNA stability. In mice, endothelial-specific overexpression of eNOS stimulated, while chronic treatment with the NOS-blocker l-nitroarginine inhibited AT2 expression. The NO-induced AT2 up-regulation was associated with a profound inhibition of angiotensin-converting enzyme (ACE)-activity. In endothelial cells this reduction of ACE-activity was reversed by either the AT2 antagonist PD 123119 or by inhibition of transcription with actinomycin D. Furthermore, in C57Bl/6 mice an acute i.v. bolus of l-nitroarginine did not change AT2-expression and ACE-activity suggesting that inhibition of ACE-activity by endogenous NO is crucially dependent on AT2 protein level. Likewise, three weeks of either voluntary or forced exercise training increased AT2 expression and reduced ACE-activity in C57Bl/6 but not in mice lacking eNOS suggesting significance of this signaling interaction for vascular physiology. Finally, aortic AT2 expression is about 5 times greater in female as compared to male C57Bl/6 and at the same time aortic ACE activity is reduced in females by more than 50%. Together these findings imply that endothelial NO regulates AT2 expression and that AT2 may regulate ACE-activity.


Assuntos
Células Endoteliais/efeitos dos fármacos , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico/metabolismo , Receptor Tipo 2 de Angiotensina/genética , Animais , Células Endoteliais/metabolismo , Inibidores Enzimáticos/farmacologia , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/genética , Sistema Renina-Angiotensina/efeitos dos fármacos , Suínos , Regulação para Cima
8.
Antioxid Redox Signal ; 23(9): 711-23, 2015 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-25764009

RESUMO

AIMS: Vascular oxidative stress generated by endothelial NO synthase (eNOS) was observed in experimental and clinical cardiovascular disease, but its relative importance for vascular pathologies is unclear. We investigated the impact of eNOS-dependent vascular oxidative stress on endothelial function and on neointimal hyperplasia. RESULTS: A dimer-destabilized mutant of bovine eNOS where cysteine 101 was replaced by alanine was cloned and introduced into an eNOS-deficient mouse strain (eNOS-KO) in an endothelial-specific manner. Destabilization of mutant eNOS in cells and eNOS-KO was confirmed by the reduced dimer/monomer ratio. Purified mutant eNOS and transfected cells generated less citrulline and NO, respectively, while superoxide generation was enhanced. In eNOS-KO, introduction of mutant eNOS caused a 2.3-3.7-fold increase in superoxide and peroxynitrite formation in the aorta and myocardium. This was completely blunted by an NOS inhibitor. Nevertheless, expression of mutant eNOS in eNOS-KO completely restored maximal aortic endothelium-dependent relaxation to acetylcholine. Neointimal hyperplasia induced by carotid binding was much larger in eNOS-KO than in mutant eNOS-KO and C57BL/6, while the latter strains showed comparable hyperplasia. Likewise, vascular remodeling was blunted in eNOS-KO only. INNOVATION: Our results provide the first in vivo evidence that eNOS-dependent oxidative stress is unlikely to be an initial cause of impaired endothelium-dependent vasodilation and/or a pathologic factor promoting intimal hyperplasia. These findings highlight the importance of other sources of vascular oxidative stress in cardiovascular disease. CONCLUSION: eNOS-dependent oxidative stress is unlikely to induce functional vascular damage as long as concomitant generation of NO is preserved. This underlines the importance of current and new therapeutic strategies in improving endothelial NO generation.


Assuntos
Endotélio Vascular/metabolismo , Neointima/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo , Alanina/metabolismo , Animais , Aorta/metabolismo , Bovinos , Citrulina/metabolismo , Cisteína/metabolismo , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Superóxidos/metabolismo , Vasodilatação
9.
Curr Opin Pharmacol ; 12(2): 195-202, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22285392

RESUMO

The post surgery success of coronary artery bypass grafting (CABG) is counteracted by thrombosis and de-endothelialization, intimal hyperplasia and, over the long term, atherosclerosis. There are many reasons to assume that in CABG patients vascular bioavailability of NO generated by the endothelium plays an important role for graft function. This holds true for factors such as graft type, harvesting and storage, the type of surgery, non-pharmacologic prevention of risk factors, for example, regular physical activity (if feasible), and drug therapy. Although the precise role of graft endothelial NO bioavailability for graft patency and clinical endpoints is still uncertain, current data rather speak in favor of NO indicating that the potential of vasoprotective activities of NO in the CABG patient deserves further investigation.


Assuntos
Ponte de Artéria Coronária , Endotélio Vascular/metabolismo , Óxido Nítrico/metabolismo , Animais , Oclusão de Enxerto Vascular/metabolismo , Oclusão de Enxerto Vascular/prevenção & controle , Humanos
10.
Basic Res Cardiol ; 106(4): 539-49, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21298436

RESUMO

In isolated cells, soluble guanylyl cyclase (sGC) activity is regulated by exogenous nitric oxide (NO) via downregulation of expression and posttranslational S-nitrosylation. The aim of this study was to investigate whether such regulatory mechanism impact on endothelium-dependent vasodilation in a newly developed mouse strain carrying an endothelial-specific overexpression of eNOS (eNOS(++)). When compared with transgene negative controls (eNOS(n)), eNOS(++)-mice showed a 3.3-fold higher endothelial-specific aortic eNOS expression, increased vascular cGMP and VASP phosphorylation, a L-nitroarginine (L-NA)-inhibitable decrease in systolic blood pressure, but normal levels of peroxynitrite and nitrotyrosine formation, endothelium-dependent aortic vasodilation and vasodilation to NO donors. Western blot analysis for sGC showed similar protein levels of sGC-α1 and sGC-ß1 subunits in eNOS(n) and eNOS(++). In striking contrast, the activity of isolated sGC was strongly decreased in lungs of eNOS(++). Semiquantitative evaluation of sGC-ß1-S-nitrosylation demonstrated that this loss of sGC activity is associated with increased nitrosylation of the enzyme in eNOS(++), a difference that disappeared after L-NA-treatment. Our data suggest the existence of a physiologic NO-dependent posttranslational regulation of vascular sGC in mammals involving S-nitrosylation as a key mechanism. Because this mechanism can compensate for reduction in vascular NO bioavailability, it may mask the development of endothelial dysfunction.


Assuntos
Aorta/enzimologia , Guanilato Ciclase/metabolismo , Óxido Nítrico Sintase Tipo III/fisiologia , Processamento de Proteína Pós-Traducional , Animais , Moléculas de Adesão Celular/metabolismo , GMP Cíclico/fisiologia , Hidrazinas/farmacologia , Pulmão/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Óxido Nítrico/fisiologia , Fosfoproteínas/metabolismo
11.
J Cell Mol Med ; 15(11): 2326-34, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21129156

RESUMO

Physical activity induces favourable changes of arterial gene expression and protein activity, although little is known about its effect in venous tissue. Although our understanding of the initiating molecular signals is still incomplete, increased expression of endothelial nitric oxide synthase (eNOS) is considered a key event. This study sought to investigate the effects of two different training protocols on the expression of eNOS and extracellular superoxide dismutase (ecSOD) in venous and lung tissue and to evaluate the underlying molecular mechanisms. C57Bl/6 mice underwent voluntary exercise or forced physical activity. Changes of vascular mRNA and protein levels and activity of eNOS, ecSOD and catalase were determined in aorta, heart, lung and vena cava. Both training protocols similarly increased relative heart weight and resulted in up-regulation of aortic and myocardial eNOS. In striking contrast, eNOS expression in vena cava and lung remained unchanged. Likewise, exercise up-regulated ecSOD in the aorta and in left ventricular tissue but remained unchanged in lung tissue. Catalase expression in lung tissue and vena cava of exercised mice exceeded that in aorta by 6.9- and 10-fold, respectively, suggesting a lack of stimulatory effects of hydrogen peroxide. In accordance, treatment of mice with the catalase inhibitor aminotriazole for 6 weeks resulted in significant up-regulation of eNOS and ecSOD in vena cava. These data suggest that physiological venous catalase activity prevents exercise-induced up-regulation of eNOS and ecSOD. Furthermore, therapeutic inhibition of vascular catalase might improve pulmonary rehabilitation.


Assuntos
Catalase/metabolismo , Óxido Nítrico Sintase Tipo III/biossíntese , Condicionamento Físico Animal , Superóxido Dismutase/biossíntese , Veias Cavas/metabolismo , Amitrol (Herbicida)/farmacologia , Animais , Aorta/metabolismo , Catalase/antagonistas & inibidores , Endotélio Vascular/metabolismo , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora , Miocárdio/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética
12.
Br J Clin Pharmacol ; 69(2): 179-86, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20233181

RESUMO

AIMS: The pathophysiology of angiotensin-converting enzyme inhibitor (ACEi)-induced angio-oedema remains unclear. We have investigated the impact of ACE insertion/deletion (I/D) polymorphism in combination with serum ACE activity as well as the bradykinin B2 receptor 2/3 and c.C181T polymorphisms. METHODS: We analysed the ACE I/D as well as bradykinin B2 (2/3 and C181T) receptor polymorphisms in 65 patients with documented episodes of ACEi-induced angio-oedema and 65 patients matched for age and sex being under ACEi treatment without history of angio-oedema. Furthermore, we determined serum ACE activity in 47 of the 65 angio-oedema patients 3 months after the angio-oedema attack and compared these values with 51 healthy individuals (control II). RESULTS: No risk association was identified between ACE I/D (I-allele: 0.42 vs. 0.41, D-allele: 0.58 vs. 0.59; P= 0.095) or bradykinin B2 receptor polymorphisms and the development of angio-oedema during ACEi treatment. We found a trend of lower serum ACE activity in ACE I/I genotypes in comparison with control II (I/I: 28 +/- 4.5 vs. 33 +/- 1.8 U l(-1); ID: 39 +/- 3.3 vs. 41 +/- 1 U l(-1); DD: 56 +/- 6.7 vs. 52 +/- 1.8 U l(-1); P= 0.9). CONCLUSIONS: Our data suggest that polymorphism of ACE I/D and the bradykinin B2 receptor polymorphisms are not involved in the development of ACEi-induced angio-oedema when considered individually. Further studies should be carried out to clarify whether a combination of these polymorphisms might be a risk factor for ACEi-induced angio-oedema.


Assuntos
Angioedema/induzido quimicamente , Inibidores da Enzima Conversora de Angiotensina/efeitos adversos , Polimorfismo Genético/genética , Receptor B2 da Bradicinina/genética , Fatores Etários , Análise de Variância , Angioedema/genética , Angioedema/metabolismo , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Receptor B2 da Bradicinina/metabolismo , Fatores de Risco , Fatores Sexuais
13.
Free Radic Res ; 44(2): 199-207, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19929243

RESUMO

The number of circulating stem cells with endothelial progenitor capacity (EPCs) inversely correlates with the number of cardiovascular risk factors. In this study we sought to investigate the effects of vascular H(2)O(2) on circulating EPC levels. In C57BL/6 mice 3 weeks of freely moving or forced physical activity or voluntary exercise failed to increase circulating EPCs defined as double positive for Flk-1 and CD34, CD133 or Sca-1. Likewise, neither insertion of additional genes encoding for catalase (cat(++)) or eNOS nor eNOS knock-out changed EPCs in resting mice. In striking contrast, inhibition of catalase by aminotriazole strongly reduced circulating EPCs in sedentary cat(++) and their transgen-negative littermates (cat(n)), while forced or voluntary exercise training of cat(++) mice significantly increased the number of circulating EPCs. The latter effect was completely inhibitable by aminotriazole. These data suggest that endogenous vascular H(2)O(2) likely contributes to the impairment of important stem cell-induced vascular repair mechanisms in cardiovascular disease.


Assuntos
Endotélio Vascular/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Condicionamento Físico Animal/fisiologia , Amitrol (Herbicida)/farmacologia , Animais , Catalase/antagonistas & inibidores , Catalase/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Peróxido de Hidrogênio/antagonistas & inibidores , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
14.
J Cell Mol Med ; 13(7): 1271-8, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19320775

RESUMO

Pentaerythritol tetranitrate (PETN) treatment reduces progression of atherosclerosis and endothelial dysfunction and decreases oxidation of low-density lipoprotein (LDL) in rabbits. These effects are associated with decreased vascular superoxide production, but the underlying molecular mechanisms remain unknown. Previous studies demonstrated that endogenous nitric oxide could regulate the expression of extracellular superoxide dismutase (ecSOD) in conductance vessels in vivo. We investigated the effect of PETN and overexpression of endothelial nitric oxide synthase (eNOS(++)) on the expression and activity of ecSOD. C57BL/6 mice were randomized to receive placebo or increasing doses of PETN for 4 weeks and eNOS(++) mice with a several fold higher endothelial-specific eNOS expression were generated. The expression of ecSOD was determined in the lung and aortic tissue by real-time PCR and Western blot. The ecSOD activity was measured using inhibition of cytochrome C reduction. There was no effect of PETN treatment or eNOS overexpression on ecSOD mRNA in the lung tissue, whereas ecSOD protein expression increased from 2.5-fold to 3.6-fold (P < 0.05) by 6 mg PETN/kg body weight (BW)/day and 60 mg PETN/kg BW/day, respectively. A similar increase was found in aortic homogenates. eNOS(++) lung cytosols showed an increase of ecSOD protein level of 142 +/- 10.5% as compared with transgene-negative littermates (P < 0.05), which was abolished by N(omega)-nitro-L-arginine treatment. In each animal group, the increase of ecSOD expression was paralleled by an increase of ecSOD activity. Increased expression and activity of microvascular ecSOD are likely induced by increased bioavailability of vascular nitric oxide. Up-regulation of vascular ecSOD may contribute to the reported antioxidative and anti-atherosclerotic effects of PETN.


Assuntos
Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/enzimologia , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/enzimologia , Tetranitrato de Pentaeritritol/farmacologia , Superóxido Dismutase/biossíntese , Animais , Pressão Sanguínea/efeitos dos fármacos , Indução Enzimática/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo III/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Superóxido Dismutase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA